Per- and Polyfluoroalkyl Substances (PFAS) analysis in water using ion exchange SPE-LC-MS/MS with Activated Carbon Delay Column Reika Takahara¹, Takumi Kunieda¹, Kazuyuki Ishi¹, Manabu Takayanagi¹, Hiroshi Hayashida¹ ¹GL Sciences Inc., Tokyo, Japan #### Introduction Per- and Polyfluoroalkyl Substances (PFAS) is a general term for organofluorine compounds. It is known to be low in degradability and persist in the environment for a long time. Their toxicity and environmental pollution have attracted global attention and research continues. The solid-phase extraction-LC/MS/MS method has been used for the analysis of PFAS in drinking-water under EPA Methods 537.1 and 533. Because some countries and regions have low targets, it can be difficult to achieve stable, sensitive and accurate measurements that meet the required levels. Care must be taken to minimize the effects of blanks eluting from fluorinated resins such as PTFE, which are commonly used as components in LC systems. A known countermeasure, is to delay the elution time of the blank peak by connecting a Delay column packed with a C18 material before the autosampler, and to shift the retention time from the peak derived from the sample. However, it is difficult to sufficiently increase the difference between the two retention times with a conventional C18 column. Due to the relationship between the rise in pressure and the gradient delay time, column sizes are limited. Therefore, in order to obtain a stable PFAS analysis, we have developed a new Delay column. Our Delay column is packed with high-purity activated carbon beads. To speed up solid phase extraction, you can also scale down the amount of sample water, the size of the SPE cartridge and the amount of the elution solvent #### Methods The Delay column is packed with high-purity spherical activated carbon in LC column hardware. The analysis column is a InertSustain C18-HP 150 mm x 2.1 mm, 3 µm (GL Sciences, Inc.). LC-MS/MS uses a 4000 QTRAP (SCIEX). The standard sample was prepared by diluting a PFAS 21 Mixture Standard (PFAC-MXC, Wellington Laboratories) and adding it to the sample water, 13 mixtures of MPFAC-C-ES (Wellington Laboratories) was added as an external standard. Solid phase extraction was used. The SPE column is a InertSep MA-2 250 mg (GL Sciences, Inc.) packed with a methacrylate polymer with a weak anion exchange group (Diethyl amine) was introduced. The operation from conditioning the SPE cartridge to the evaporation of the elution solvent was performed using the automated SPE instrument the AquaTrace ASPE899(GL Sciences, Inc.). A 1000mL sample passed through a SPE cartridge, and then eluted with 5 mL of 0.1% ammonia methanol, after that it is heated and sprayed with nitrogen gas, and concentrated to 0.5 mL. For the Rapid SPE method using an InertSep MA-2 150 mg, 30 mL of the sample water was passed through the cartridge, and then 1 mL of the eluting solvent was used. The solvent was not distilled off after elution. A mixture of standard MPFAC-C-IS (Wellington Laboratories) was added to the eluate as an injection standard. In order to avoid contamination of PFAS, a high-purity polypropylene vial was used as the vial for the autosampler, and an aluminum foil and silicon septum cap was used for the vial. All glassware and pipette tips were soaked in methanol and washed Table 1 LC Conditions | System | Nexera UFLC (Shimadzu) | |----------------|--| | Column | InertSustain C18 (3 μm HP, 150 x 2.1 mm I.D.) | | Delay Column | Delay Column for PFAS (30 mm x 3.0 mm I.D.) | | Mobile Phase A | 10 mmol/L Ammonium acetate | | Mobile Phase B | Acetonitrile | | Flow Rate | 0.3 mL/min | | Column Temp | 40 °C | | Injection Vol | 1 μL | | Gradient (A/B) | 80/20 - 2min - 80/20 - 13min - 0/100 - 2min -
100/0-0.1min - 80/20 - 6min - 80/20 | | | | Table 2 Compound and MS Conditions | System | 4000 QTRAP (SCIEX) | | | | | |-----------|---------------------|------|-----|------|-----| | Compounds | Transition
Q1/Q3 | DP | EP | CE | СХР | | PFBA | 213/169 | -45 | -10 | -14 | -9 | | PFPeA | 263/219 | -50 | -10 | -11 | -9 | | PFHxA | 313/269 | -50 | -10 | -15 | -9 | | PFHpA | 363/319 | -55 | -10 | -14 | -9 | | PFOA | 413/369 | -45 | -10 | -14 | -9 | | PFNA | 463/419 | -65 | -10 | -16 | -9 | | PFDA | 513/469 | -65 | -10 | -14 | -9 | | PFUnDA | 563/519 | -65 | -10 | -16 | -9 | | PFDoDA | 613/569 | -40 | -10 | -17 | -9 | | PFTrDA | 663/619 | -50 | -10 | -19 | -9 | | PFTeDA | 713/669 | -50 | -10 | -15 | -9 | | PFHxDA | 813/769 | -65 | -10 | -17 | -9 | | PFOcDA | 913/869 | -65 | -10 | -17 | -12 | | PFBS | 299/80 | -80 | -10 | -62 | -3 | | PFPeS | 349/80 | -100 | -10 | -70 | -13 | | PFHxS | 399/80 | -80 | -10 | -80 | -3 | | PFHpS | 449/80 | -100 | -10 | -104 | -15 | | PFOS | 499/80 | -90 | -10 | -95 | -3 | | PFNS | 549/80 | -105 | -10 | -116 | -13 | | PFDS | 599/80 | -80 | -10 | -80 | -3 | | PFDoS | 699/80 | -115 | -10 | -126 | -13 | | Column | |--| | Delay Column Negating unit Remp A 88 | | Fig.1 Delay Column installation position | | Extraction
Standard | Transition
Q1/Q3 | DP | EP | CE | СХР | |------------------------------------|---------------------|------|-----|-----|-----| | 13C4-PFBA | 217/172 | -30 | -10 | -14 | -31 | | 13C5-PFPeA | 268/223 | -25 | -10 | -12 | -11 | | 13C5-PFHxA | 318/273 | -30 | -10 | -14 | -47 | | 13C ₄ -PFHpA | 367/322 | -30 | -10 | -14 | -19 | | 13C ₈ -PFOA | 421/376 | -30 | -10 | -14 | -9 | | 13C ₉ -PFNA | 472/427 | -30 | -10 | -14 | -11 | | ¹³ C ₆ -PFDA | 519/474 | -40 | -10 | -16 | -13 | | 13C ₇ -PFUdA | 570/525 | -60 | -10 | -16 | -7 | | 13C ₂ -PFDoA | 615/570 | -40 | -10 | -18 | -15 | | 13C ₂ -PFTeDA | 715/670 | -45 | -10 | -18 | -17 | | 13C3-PFBS | 302/80 | -75 | -10 | -70 | -13 | | 13C3-PFHxS | 402/80 | -75 | -10 | -84 | -13 | | 13C ₈ -PFOS | 507/80 | -110 | -10 | -90 | -13 | | | | | | | | | Transition
Q1/Q3 | DP | EP | CE | СХР | |---------------------|--|---|--|--| | 216/172 | -30 | -10 | -14 | -19 | | 415/370 | -30 | -10 | -14 | -9 | | 515/470 | -35 | -10 | -16 | -35 | | 503/80 | -105 | -10 | -120 | -13 | | | Q1/Q3
216/172
415/370
515/470 | Q1/Q3 DP
216/172 -30
415/370 -30
515/470 -35 | Q1/Q3 DP EP
216/172 -30 -10
415/370 -30 -10
515/470 -35 -10 | Q1/Q3 DP EP CE 216/172 -30 -10 -14 415/370 -30 -10 -14 515/470 -35 -10 -16 | #### Results By using our Delay Column for PFAS, packed with high-purity activated carbon, it is confirmed that the peak to be analyzed and the blank peak were sufficiently separated. In the concentration, using our SPE column, InertSep MA-2, all of the PFAS 21 components from C4 to C18 were eluted with 5 mL of 0.1% ammonia methanol. As a result of the recovery test and the extracted tap water samples, linearity was 0.99 or more in the range of 1 - 20 ng/L, and repeatability at 5 ng/L was 16% or less. Fig.3 Comparison chromatogram of Delay columns | | lable.3 Pressure comparison of Delay columns | | | | | | |--|--|--|----------|--|--|--| | | Analytical column | Delay Colum | Pressure | | | | | | InertSustain C18
(2.1 x 150 mm 3 µm-HP) | - | 19.8 MPa | | | | | | | Delay Column for PFAS
(3.0 x 30 mm) | 19.8 MPa | | | | | | | General ODS | 23 MPa | | | | | Table.4 Repeatability Linearity, and Recovery | | | | | | | |---|-----------------------------|----------------------|-------------------------|-------------------------|--------------|--| | Compounds | Repeatability
(CV%, n=5) | Calibration
Range | Linearity
(1~20ng/L) | Recovery
Rate
(%) | R.T
(min) | | | PFBA | 13 | 1-50 | 0.9999 | 80 | 4.11 | | | PFPeA | 8 | 1-50 | 0.9999 | 100 | 6.69 | | | PFHxA | 14 | 1-50 | 0.9999 | 96 | 7.88 | | | PFHpA | 7 | 1-50 | 0.9996 | 107 | 8.76 | | | PFOA | 10 | 1-50 | 0.9999 | 99 | 9.52 | | | PFNA | 10 | 1-50 | 0.9999 | 87 | 10.25 | | | PFDA | 7 | 1-50 | 1 | 101 | 10.95 | | | PFUdA | 7 | 1-50 | 0.9997 | 104 | 11.65 | | | PFDoA | 5 | 1-50 | 0.9999 | 96 | 12.32 | | | PFTrDA | 5 | 1-50 | 0.9997 | 108 | 12.96 | | | PFTeDA | 10 | 1-50 | 0.9999 | 88 | 13.58 | | | PFHxDA | 3 | 1-50 | 0.9999 | 119 | 14.67 | | | PFODA | 8 | 1-10 | 0.999 | 99 | 15.5 | | | PFBS | 12 | 1-50 | 0.9998 | 92 | 8.15 | | | PFPeS | 6 | 1-50 | 0.9998 | 95 | 9.13 | | | PFHxS | 8 | 1-20 | 0.9996 | 97 | 9.97 | | | PFHpS | 9 | 1-20 | 0.999 | 93 | 10.73 | | | PFOS | 16 | 1-20 | 0.9995 | 102 | 11.45 | | | PFNS | 9 | 1-10 | 0.996 | 95 | 12.13 | | | PFDS | 4 | 1-20 | 0.9992 | 86 | 12.77 | | | PFDoS | 10 | 1-10 | 0.999 | 83 | 13.95 | | 96.8 106.1 17.5 92.7 83.3 19.9 63 40.1 38.8 44.4 10.2 80.1 103.7 11.9 98.2 98.3 18.4 90.4 24.3 23.8 68.6 52 Table.5 Repeatability using small SPE(150mg) ### Conclusions Using a Delay Column packed with high-purity spherical activated carbon beads, the system and mobile phase blanks were reduced and PFAS was analyzed with high accuracy. When InertSep MA-2, which is a weak anion exchange column, without a reverse phase mode, was used as the SPE column, a stable high recovery rate was obtained. Lastly, by reducing the SPE procedure and the concentration ratio, rapid extraction is possible. # References - 1. Standard test method in water, Ministry of Health, Labor and Welfare, Japan - 2. Water Supply Test Method 2011 Edition, Japan Water Works Association - FPA METHOD 537.1 DETERMINATION OF SELECTED PER- AND POLYFILLORINATED ALKYL SUBSTANCES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)Version 1.0,November 2018 - EPA METHOD 533: DETERMINATION OF PER- AND POLYFLUOROALKYL SUBSTANCES IN DRINKING WATER ISOTOPE DILUTION ANION EXCHANGE SOLID PHASE EXTRACTION AND LIQUID OMATOGRAPHY/TANDEM MASS SPECTROMETRY # **Ordering Information** # **SPE Cartridge** #### InertSep MA-2 Methacrylate polymer with Diethyl amine Average Particle Size: 70 μm Ion Capacity Volume: 0.5 meg/g pH Range: 1 - 14 Remark: Cl' lon Pair | Description | Column
Dimension | Qty. | Cat.No. | |---|---------------------|--------|------------| | InertSep MA-2 | 30mg/1mL | 100pcs | 5010-27324 | | | 60mg/3mL | 100pcs | 5010-27325 | | | 100mg/3mL | 50pcs | 5010-27320 | | | 150mg/3mL | 50pcs | 5010-27319 | | | 250mg/6mL | 30pcs | 5010-27321 | | | 500mg/6mL | 30pcs | 5010-27322 | | | 1g/20mL | 20pcs | 5010-27326 | | | 2g/20mL | 20pcs | 5010-27327 | | InertSep Slim-J MA-2
(luer compatible) | 280mg | 50pcs | 5010-65785 | # InertSep WAX (Mix of Weak Anion Exchange and Reversed Phase) SDVB polymer with Diethyl amine Average Particle Size: pH Range: | Description | Column
Dimension | Qty. | Cat.No. | |-----------------|---------------------|-------|------------| | InertSep WAX FF | 60mg/3mL | 50pcs | 5010-62760 | | | 150mg/6mL | 30pcs | 5010-62761 | | | 500mg/6mL | 30pcs | 5010-62762 | | | 150mg/12mL | 20pcs | 5010-62763 | | | 500mg/20ml | 20ncs | 5010-62764 | ### InertSep PLS-2 Styrene-Divinylbenzene copolymer(SDVB) Average Particle Size: pH Range: | Description | Column Dimension | Qty. | Cat.No. | |-----------------------|------------------|-------|------------| | | 265mg/6mL | 50pcs | 5010-27430 | | | 270mg/6mL | 50pcs | 5010-25020 | | InertSep PLS-2 | 500mg/6mL | 30pcs | 5010-25025 | | | 1000mg/6mL | 20pcs | 5010-25030 | | | 265mg/20mL | 20pcs | 5010-27431 | | | 270mg/20mL | 20pcs | 5010-25035 | | | 500mg/20mL | 20pcs | 5010-25036 | | InertSep Slim-J PLS-2 | 230mg | 50pcs | 5010-65720 | | mertsep slim-J PLS-2 | 265mg | 50pcs | 5010-65721 | | | | | | ### InertSep HLB SDVB polymer with hydrophilic group Average Particle Size: 60 µm, 3 pH Range: 1 - 14 60 μm, 30 μm 1 - 14 | | 1 | |--------------|-----| | InertSep HLB | 100 | | Description | Column Dimension | Qty. | Cat.No. | |-----------------|------------------|--------|------------| | | 60mg/3mL | 50pcs | 5010-27532 | | InertSep HLB FF | 200mg/6mL | 30pcs | 5010-27533 | | · | 500mg/6mL | 30pcs | 5010-27534 | | 60μm | 200mg/20mL | 20pcs | 5010-27535 | | | 500mg/20mL | 20pcs | 5010-27536 | | | 10mg/1mL | 100pcs | 5010-27520 | | InertSep HLB | 30mg/1mL | 100pcs | 5010-27521 | | | 60mg/3mL | 50pcs | 5010-27522 | | 30μm | 200mg/6mL | 30pcs | 5010-27523 | | | 500mg/6mL | 30pcs | 5010-27524 | | InertSep HLB | 10mg | 1pc | 5010-66440 | | 30μm Well plate | 30mg | 1pc | 5010-66441 | # **LC Column** #### InertSustain C18 High Purity ES Silica Gel Base Material: Particle Size: Surface Area: Pore Size: Pore Volume: 2 μm, 3 μm, 5 μm 350 m2/g 100 Å (10 nm) 0.85 mL/g Functional Group: Octadecyl End-capping: Carbon Loading: USP Code: pH Range: Yes 14.0 % L1 1 - 10 Particle Size Length Qty. Cat.No. 3μm HP 2.1mm 150mm 5020-14415 #### InertSustain AQ-C18 Base Material: Particle Size: Surface Area: Pore Size: Pore Volume: High Purity ES Silica Gel 1.9 μm, 3 μm, 5 μm 350 m2/g 100 Å (10 nm) 0.85 mL/g Functional Group: Octadecyl End-capping: Yes Carbon Loading: 13.0 % USP Code: L1 pH Range: 1 - 10 | Particle Size | I.D. | Length | Qty. | Cat.No. | |---------------|-------|--------|------|------------| | 1.9µm | 2.1mm | 100mm | 1pc | 5020-89939 | | 1.9µm | 2.1mm | 150mm | 1pc | 5020-89940 | | 3um HP | 2.1mm | 150mm | 1pc | 5020-89924 | # **Delay Column** #### **Delay Column for PFAS** | Particle | I.D. | Length | Qty. | Cat.No. | |------------------|-------|--------|------|------------| | Activated carbon | 3.0mm | 30mm | 1pc | 5020-90005 | # **Autosampler Vial** # High Purity PP Vial (Screw) Size: 11.6 x 32 mm Cap size: 9-425 | Material: Polypropylene | | | | | |-------------------------|---------|------------|--|--| | Volume | Qty. | Cat.No. | | | | 0.3mL | 100pcs | 1030-14000 | | | | 0.3ml | 1000ncs | 1030-14004 | | | # High Purity PP Vial with Cap(Snap) Size: 11.6 x 32 mm Cap size: 11mm Material: Polypropylene(Vial) Polyethylene(Cap) # Short Thread Cap with Aluminum/Silicone Septa Cap size: 9-425 Material: Polypropylene(Cap) Aluminum Foil / Silicone(Septa) Cap Color Qty. Cat.No. Green 100pcs 1030-72000 Yellow 100pcs 1030-72001 # **Automated Solid Phase Extraction System** # AquaTrace ASPE899 Channel: Operation: LCD touch panel Number of solvent: Number of storage methods: 120 (Inside body) / 120 (USB memory) 0.5-100 mL / min Sample water flow rate: Liquid level sensor: Yes (optional) 480 (W) × 560 (D) × 615 (H) mm (excluding protrusions, rubber feet included) Weight (standard specification): About 56 kg ### GL Sciences Inc. USA 4733 Torrance Blvd. Suite 255 Torrance, CA 90503, USA +1 310-265-4424 +1 310-265-4425 Fax: Email: info@glsciencesinc.com # GL Sciences B.V. Dillenburgstraat 7C 5652 AM Eindhoven The Netherlands Tel: +31 (0)40 254 95 31 Email: info@glsciences.eu # GL Sciences (ShangHai) Ltd. Tower B, Room 2003, Far East International Plaza, NO,317 Xianxia Road, Changning District. Shanghai, China P.C. 200051 Tel: +86 (0)21-6278-2272 Email: contact@glsciences.com.cn # GL Sciences Inc. 22-1 Nishishinjuku 6-chome, Shinjuku-ku Tokyo 163-1130, Japan +81-(0)3-5323-6620 Tel: E-mail: world@gls.co.jp Web: www.glsciences.com